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1. Introduction.—Dungey! in his remarkable report of 1954 has discussed in
some detail the electrodynamic behavior of the outer atmosphere in the presence
of a constant dipole magnetic field. We shall here approach the problem from a
different point of view, however, concentrating our attention (as we did in our
previous studies® ) on the vorticity field and the current density .

Consider an infinite mass of an electrically conducting fluid at rest, embedded in
a constant dipole magnetic field H. To simplify the discussion, take the conductiv-
ity as infinite (an approximation justified for a large-scale disturbance) and assume
the fluid to be a homogeneous incompressible material. Assume that as a result
of a perturbation, a velocity field v is produced in a certain region and that the
magnetic field becomes H + h. The amplitude is assumed to be small enough for
nonlinear terms to be neglected. We propose to investigate the magnetohydro-
dynamic behavior of the fluid in terms of generalized Alfvén waves by means of
vorticity and current density. The equations obtained are complicated, however,
and solutions will be discussed only for large distances from the center of the dipole.
We shall conclude this note with an appendix where the geometry of lines of force
is briefly discussed; the results obtained there are not all original, but are essential
to an understanding of the subject,
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2. Fundamental Equations.—The equations relevant to the problem are

ov
vl —grad p + wj X H, 1)
dh
— = (H-V)v — (v-V)H, (2)
ot
divv = 0, 3
divh = 0, 4)

where po is the density (a constant), p the pressure, u, the permeability, j =
(1/4x) curl h, and the electromagnetic variables are measured in emu; the condi-
tion OH/dt = 0 (constant dipole) has been used in equation (2).

Since curl H = 0, equation (1) can be rewritten as follows:

ov .
w2 = g (p + ) + 5 (@b + (h-D)H) (5)
Taking the curl of terms of equations (5) and (2) we obtain
dw
2p0 gt— = Z— curl [(H-V)h + (h-V)H], (6)
Oj .
4 v curl {((H-V)v — (v-V)H], )
4
where o = (1/,) curl v is the vorticity.
We have
curl [(H-V)h + (h-V)H] = 4xH-V)j
OH JOH
+ grad h, X - +gradh,, X ——~+gradh, X?E _
oh
+ grad H, X~+gradH X +gradH X-b—- 8)
After some calculation, we obtain-
curl (H-V)h + (h-V)H] = 4x{(H.V})j — (j-V)H], ®
where the condition curl H = 0 has been used.
Hence, equation (6) can be written
‘ ) o
2p0 " = wl(HV)j ~ (V)H] (10)

On the other hand,
curl [(H-V)v — (v.-V)H] = 2(H-V)o

ov ., ov ov
+ grad H; X > -+ grad H, X ay+ gradH,X >
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OH OH OH

- (grad v X — + grad v, X — + grad v, X —) (11)
or oy oz

However, in this case there is no simple way to write vectorially equation (7) in a
compact form; we have for components the following equations

21% = [(H-V)o]
OH, oH, OH , 0H, OH,
Q/ 32 -+ by €33 (bz e + oz e + oz 6’23);
i
dw-alty = [H-V)w]
OH, OH, oH, OH, (12)
+ Dz 11+ 812+ - S‘;‘exx""geaz'f‘——eas,
07,
27 7 = (H-V)al,
OH, 0H, H OH, DH OH,
+ — oz €12 + en + — - ( oy 12+ 3?7 613),

where e;; is the rate of deformation: ey = 1/2[(dv:/dx; + dv;/dx,)], and where again
the condition curl H = 0 has been used.

3. Propagation at Large Distances.—These equations are rather complicated.
We may simplify them by observing that the derivatives of the components of the
dipole magnetic field are of the order of r—4, while these components themselves
are of the order of r—2  Therefore, for r sufficiently large, we may neglect the term
(J-V)H in equation (10), and similarly we. may neglect all terms such as (OH ./dy)es,
ete. in equations (12). Hence for r sufficiently large, equations (10) and (12) re-
duce to

dw j dj : aj)
= _ = hi = 13
290 dt (H oz +Hy y+Hz Dz ’ ( )
and
0j - dw
27 i + H + H, > (14)

In the second place, we have along a line of force

d d
H—-H—x H-uY H,=H—z, (15)
ds’ ds
where H is the magnitude of the dipole magnetic field and s 1s the element of length
of a line of force.
Hence, along a line of force, equations (13) and (14) can be written

0 <ajdx dj dy 9_j_dj>

2 —_— =
po - Oz ds  Qyds Odzds/’

Yy (16)
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Jj (bo) dx  Owdy |, dw dz)
d 2ro =H|(—= + =Y 205 17
an "ot Or ds Oy ds 0z ds/’ an
. Ow 0j
that 20— = pH 2 18
at1s P, = w2 (18)
0j da
20 —= = H —. 19
Tt s (19)
Observing that 0H/0t = 0 (constant dipole), we obtain by cross-differentiation
O%w 0w 1 dA2 du
bl L Rt 20
otz Os? + 2 ds Os (20)
0% _ ,, 9%, 1d4°0j (21)
oz 7 ostt! 2 ds of
cH2 02‘12 2
where Ar =~ =% cos” A (1 4+ 4tan?))
. 4wpy  4mwpy 18
_ 2l—i-4:t3,n2)\ 22)

roS cos®® x '

and where we put y* = u,M?/4wro; the other notations are given in appendix.
We achieve the reduction of these equations by taking instead of s the magnetic
latitude, A, as independent variable. We have

9w _ dudh (23)
os O\ ds
2 2 2 2
e _ 0O (@) a_“’ﬂ, (24)
Os? OA? \ ds O\ ds?
2
and @ _dd (di>. (25)
ds? ds d\ \ds
Now (see appendix)
n_ - L mm——— (26)
ds 7o cOs? )\\/l_-}-‘ 4 tan? )\,
therefore, we have
2 2\ —
a2\ _ 2(2 tan* X — 1) tan A . @7)
ds? ro? cos® A (1 + 4 tan?)\)?
On the other hand,
120 _ ddt (0):20
ds ds  dx \ds/ O\
2
6v%(3 + 8 tan? A) tan A Qw (28)

- r® cos™ A\ (1 + 4 tan? \) aa’
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Substitution of these values in equation (20) gives

02w vt (b’m E)(o) \
a1 (2 A— ) 29
o2 r® cos!d A \OA? T 7 tan oA 29)

We have, of course, an identical equation for j.
Supposing that

o), t) = Ce™wi(N), (30)
we get

A0y dey

~— 4 7tan A — 28 cos™ A = 0 31)

dne + dn + By ()1 ) (

where 82 = a?/y% ‘
4. Integral Equations for Vorticity and Current Density.—Equation (31) can be

transformed into an integral equation similar to that given by Dungey (loc. cit., p.

33). Inorder to do this, we use the identity

d d
—_ — 3
o I:sec A Y (o, sec A)}

d*oy doy :]
= 4 Z 22 et : 2 .
sec A[d)@ 4 7 tan A I + 3(1 + 5 tan? Ny (32)

By virtue of (32), equation (31) can be written

d d :
i [sec A 5 (o1 sec? )\)] = [3(1 + 5 tan? \) sec A — B8 cos!® Aoy sec® A, (33)

or, by putting Q = «; sec? A,

d aQ
o (sec A E)T) = [3(1 + 5 tan? X) sec A — B%® cos! \]Q. (34)

Assuming that for A = 0, dQ/d\ = 0, te., do;/d\ = 0, we obtain the following
integral equation for Q(\):

Q) = Q(0)
b N
+ fo cos Nd\' f [3(1 + 5tan? M) see N —B2rg8 cos'® M ]QAMAN",  (35)
0

which, curiously enough, has the same form as the equation given by Dungey
(loc. cit. p. 33) but is of vectorial character and includes an additional term 3(1 + 5
tan? \) sec A; the variables and assumptions used to arrive at this result differ
radically from those used by Dungey.

The quantity J\) = j; () sec?® A verifies the same equation (35). Equation (35)
may be integrated by successive approximations.
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Appendiz.—The geometry of lines of force: As is well known, a dipole magnetic field has com-
ponents

3 2 _ 3,2
Hz = _A[i{?’ HV = —Mlazl Hl =—-M : 32 ’
T T I

(36)

where A1 is the magnetic moment of the dipole, 72 = 3 4- y% 4 2%, and the sign is chosen such that
H, is positive in the zy-plane, which is the equatorial plane of the dipole; this requires that the
dipole have its negative pole directed upward (see Burgers*). The differential equations of lines
of force are

d: d dz
nAR. . (37)
—3xz —3yz x? 4yt — 222
Integration of these equations gives
%23 = Br,
i @
where B and C are constants. of integration.
We now introduce the polar coordinates
Z = 7 CO8 ¢ COS A,
Y = rsin ¢ cos A, (390
z = rgin A,

where A designates the magnetic latitude. In these coordinates, the first equation (38) becomes

cos? ¢ cos? A = B (40)
To eliminate ¢, we write
Y2 ¢ = tan . (44)
x
Hence equation (40) becomes
r = 7g COSZA, (42)

which is a well-known result; it is obvious that the constant r, is the value of r for A = 0 (in equa-
torial plane).

In Cartesian coordinates, we have the following parametric equations of lines of force
_ _rcosi
TVert
Cr cos A (43)
y = C\/_—ZZ-{-].’

z = rsin\.

To calculate the linear element of these lines, we may use either equation (42) and then

ds? = dr? + r2dx?, (44)

or the parametric equations (43) and then we have
ds? = dz? + dy* + dz2. (45)
The result is ds = raxV'1 + 4 tan? A, (46)

The tangent to a line of force is defined by
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3 sin A
Ver+1V1 4 4tan® N

R
[}
&lE

3C sin A
\/C’ +1 \/1 + 4 tan? A

1Y
[

(47)

(1 = 2 tan? A) cos A
V1 + 4 tan?n

<
it
&R 81&

The radius of curvature R is given by

1 [da\? | [d8\* | [d7\?
2 <d_s) T <ds> * (ds) ' e

After some caleulations we find
191 42 tan? )2

—~ = . (49)
R* 31 + 4 tan? \)®
In the equatorial plane,
r To
R=-=— 50
3 3 (50)
As a verification of result (49), we may use the formula
2 2y3/2
(r* +r7) (51)

= e Lo ¥
r2 420" — ™

where 7 is given by (42).
The principal normal, which in our case reduces to the normal of lines of force since these are
plane curves, is determined by

da cos A 1 — 2tanzx )
0!1=R""=— ]
ds VCr +1 V1 + 4 tan?a
dg Cecosh 1 — 2tan?)
Bi=R— =— , 52)
' ds Ver +1 V1 + 4 tanta (
Rd'y 3 8in A
Y1 = —_—= = e
' ds V1 + 4 tan?

The binormal of the lines of force, of course, is the normal to the planes y = Cz; therefore, its
direction cosines are

C 1
= f; = —_———,
T Vorr1 - Veorta

These values may also be calculated from the formulas

Y = 0. (53)

az = Bv; — vB, etc.
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